
NASA-CR-203753

Mon. Not. R. Astron. Soc. 263, 861-867 (1993)

/

i!: J{ •

Hydrodynamics of relativistic fireballs

Tsvi Piran, 1,2Amotz Shemi 3 and Ramesh Narayan l
Itlarvard-Smithsonian Center for Astrophb_s'ics,Cambridge, MA 02138, USA
2Racah lnstitute Jor Physics, The tlebrew University, Jerusalem, Israel
Department of l'hysics and Astronomy, Tel A viv University, Tel A viv, Israel

Accepted 1993 February 3. Received 1993 January 29; in original form 1993 January 4

ABSTRACT

Many models of _,-ray bursts involve a fireball, which is an optically thick concentra-

tion of radiation energy with a high ratio of energy density to rest mass. We examine

analytically and numerically the evolution of a relativistic fireball. We show that, after

an early rearrangement phase, most of the matter and energy in the fireball is concen-

trated within a narrow shell. The shell propagates at nearly the speed of light, with a

frozen radial profile, and according to a simple set of scaling laws. The spectrum of

the escaping radiation is harder at early times and softer later on. Depending on the

initial energy-to-mass ratio, the final outcome of a fireball is either photons with

roughly the initial temperature or ultrarelativistic baryons. In the latter case, the

energy could be converted back to ?'-rays via interaction with surrounding material.
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1 INTRODUCTION

The sudden release of a large quantity of gamma-ray photons
into a compact region can lead to an opaque photon-lepton
"fireball' through the production of electron-positron pairs.
The term 'fireball' refers here to an opaque radiation plasma
whose initial energy is significantly greater than its rest mass.
The formation and the evolution of fireballs are of interest in

astrophysics (Cavallo & Rees 1978), especially for the
understanding of gamma-ray bursts at cosmological
distances (Goodman 1986; Paczyfiski 1986, 1990; Shemi &
Piran 1990; Mdsiaros & Rees 1992, 1993; Narayan,
Paczyfiski & Piran 1992) or in the halo of the Galaxy (Piran
& Shemi 1993).

In this paper we investigate the hydrodynamics of fireballs.
We begin by summarizing in this section several qualitative
results concerning this problem that are already known.
Because of the opacity due to pairs, the radiation in a fireball
cannot initially escape. Instead, the fireball expands and
cools rapidly until the temperature drops below the pair-

production threshold and the plasma becomes transparent.
In addition to radiation and e+e - pairs, astrophysical fire-
balls may also include some haryonic matter, which may be
injected with the original radiation or may be present in an
atmosphere surrounding the initial explosion. The electrons
associated with this matter increase the opacity, delaying the
escape of radiation. More importantly, the baryons are
accelerated with the rest of the fireball and convert part of

the radiation cncrgy into bulk kinetic energy.

As the fireball evolves, two important transitions take
place. One transition corresponds to the change from opti-
cally thick to optically thin conditions. As long as the total
opacity (pairs + matter) is large, the plasma expands adiabati-
cally as a perfect fluid (Goodman 1986). However, once r
drops below 1, the photons and baryons decouple from each
other and continue their evolution independently and with-
out interaction. The second transition corresponds to the
switch from radiation-dominated to matter-dominated

conditions, i.e. from q > 1 to t/< 1, where t/is the ratio of the
radiation energy E to the rest energy M: _ _- E/Mc _-(Cavallo
& Rees 1978; Shemi & Piran 1990). In the early radiation-
dominated stages, where q > 1, the fluid accelerates in the
process of expansion, reaching relativistic velocities and
large Lorentz factors. The kinetic energy also increases
proportionately. Later, however, when r/< 1, the fireball
becomes matter-dominated and the kinetic energy is com-
parable to the total initial energy. The fluid therefore coasts
with a constant radial speed. The overall outcome of the evo-
lution of a fireball then depends critically on the value of t]

when _ reaches unity. If q > 1 when r = 1, most of the energy
comes out as high-energy radiation, whereas if r/< 1 at this
stage most of the energy has already been convened into the
kinetic energy of the baryons.

The opacity itself has a contribution from electron-
positron pairs as well as from electrons associated with the
baryons. Initially, when thc local temperature 7"is large, the
opacity is dominated by e-_e - pairs (Goodman 1986).

However, this opacity, rp, decreases exponentially with
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decreasing temperature, and falls to unity when T = Tp _-20
keV. The matter opacity, rh, on the other hand decreases
only as R-2, where R is the radius of the fireball. If, at the

point where rp = 1, r b is still > 1, then the final transition to
r = 1 is delayed and occurs at a cooler temperature.

The initial ratio of radiation energy to mass, r/,, determines
in what order the above transitions take place. Shemi &
Piran (1990) identified four regimes:

(i) r/i> qpair=(3o?_EiaT_/47_mpc4Ri) '/2 (where Ei and R i
are the initial energy and radius). In this regime, the effect of
the baryons is negligible and the evolution is of a pure
photon-lepton fireball. When the temperature reaches Tp,
the pair opacity r_ drops to 1 and rh << 1. At this point the
fireball is radiation-dominated (q > 1), and so most of the
energy escapes as radiation.

(ii) rlpair>qi>qb=(3OTEi/8_Xmpc2R_) 1/3. Here, in the
late stages, the opacity is dominated by free electrons
asociated with the baryons. The comoving temperature

therefore decreases far below 7p before r reaches unity.
However, the fireball continues to be radiation-dominated,

as in the previous case, and most of the energy still escapes as
radiation.

(iii) r/b> rL> 1. The fireball becomes matter-dominated
before it becomes optically thin. Most of the initial energy is
therefore converted into the bulk kinetic energy of the
baryons, with a final Lorentz factor yf = rL + 1.

(iv) rL < 1. This is the Newtonian regime. The rest energy
exceeds the radiation energy and the expansion never
becomes relativistic.

The above summary describes the qualitative features of a
roughly homogeneous expanding fireball. In this paper we
investigate some aspects of the evolution of an inhomogene-
ous fireball with a non-uniform radial profile. We show in
Section 2 that, after an initial rearrangement phase, the
evolution is well described by an asymptotic large-y solution.
The radial profile of the fireball remains frozen over most of
this phase, and each streamline follows simple scaling laws as
a function of radius. In Section 3 we solve numerically the

adiabatic expansion of a spherical fireball and compare the
results with the asymptotic solution. We show that the agree-
ment with the theoretical solution is good. Finally, in Section
4 we summarize the results and discuss their implications.

2 SCALING LAWS AND ASYMPTOTIC
SOLUTIONS

We consider a spherical fireball with an arbitrary radial
distribution of radiation and matter. We discuss here the

early phase of evolution, during which the energy and matter
densities of the exterior are negligible compared with the
internal energy and matter densities of the fireball so that
effectively we may consider the fireball to be expanding into
a vacuum. In the later stages of the expansion, the matter
density in the exterior may be significant and a shock may
form. This phase has been discussed by Blandfi)rd & McKee
( 1976, 1977) and Mrsiaros & Rees ( 1992, 1993 ).

The unique feature of a fireball is that initially it is an
optically thick system in which the radiation energy domin-
ates the rest mass density. The optical depth is generally due
to yy _ e +e- and to Compton scattering. Under these condi-
tions there is strong coupling among the photons, and the

radiation therefore behaves like a fluid. Furthermore, if

baryons are present they will also be strongly coupled to the
radiation fluid, and the radiation and matter at each radius
will behave like a single fluid, moving with the same velocity.
Since the radiation pressure dominates, the pressure p and
the energy density e are related by p= el3. Under these
conditions, we can rewrite the standard relativistic conserva-

tion equations of baryon number and energy momentum
(Weinberg 1973) as

0 I 0
Ott(n),)+ r3 Or (r2 n u)= O, (1)

a l_Ott(e't/4 y) + rZ (r:e34u)=O' (2)

_t[(n+_e)),t,]+_ 204 +4e) u2 ] 10e

where 7 = u', u = u' = ._- 1, and we use units in which c = 1
and the mass of the particles m = 1. The mass density, n, the
total energy density, e (which includes contributions from the
radiation as well as from the relativistic electron-positron
pairs at temperatures at which the latter are present), and the
pressure, p, are measured in the local frame of the fluid, but r
and t are in the observer's frame.

If one changes the variables from r, t to r, s = t - r, equa-
tions ( 1 )-(3) then become

1 0 (rZnu) = 0 ('_+u)r_ OG - Os ' (4)

1 a(;,,,_ ,= O(e_'_ /
r-5O--r - O-s\y + u]' (5)

rl. :rIr- ("+:")1
0 [( 4 ),_]+l[0e 0eJ- n + e - (6)
Os 3 y+u] 3 _" Or '

where the derivative O/Or now refers to constant s, i.e. is
calculated along a characteristic moving outwards at the

speed of light. After a short acceleration phase, we expect
that the motion of a fluid shell will become highly relativistic
(7 >> 1). If we restrict our attention to the evolution of the
fireball from this point on, we may treat y-_ as a small
parameter and set y=u, which is good to order o(y _).
Under a wide range of conditions (which we discuss below),
the quantities on the right-hand side of equations (4)-(6) are
then significantly smaller than those on the left. We therefore
set the terms on the right to zero, and obtain the following
conservation laws for each fluid shell:

r2ny = constant, r 2 e 3/4 )J = constant,

Two regimes of behaviour are then immediately apparent.
In the radiation-dominated phase (e >> n), we have

y_r, n_r _ eozr -4 T,,b_- constant, (8)



whereT,,b_oc yell '4 is the temperature of the radiation as seen
by an observer at infinity. [Strictly, the radiation temperature
depends on er, the energy density of the photon field alone;
for T<< m_c 2, er= e, but for T> m_c 2, e contains an addi-
tional contribution from the electron-positron pairs (see
Shemi & Piran 1990); we neglect this complication for
simplicity]. The scalings of n and e given in (8) correspond to
those of a fluid expanding uniformly in the comoving frame.
Indeed, all four scalings in equation (8) were derived for a
homogeneous radiation-dominated fireball by Shemi &
Piran ( 1990; see also Goodman 1986) by noting the analogy
with an expanding universe. What we have shown here is that
the same relations are valid for each individual radial shell in

the fireball, even in the more general inhomogeneous case. In
fact, these scaling laws also apply to Paczyfiski's (1986)
solution for a steady-state relativistic wind. When we neglect
the right-hand sides of equations (4)-(6), the problem
becomes effectively only r-dependent.

Although the fluid is approximately homogeneous in its
own framc, because of Lorentz contraction it appears as a
narrow shell in the observer's frame, with a radial width

given by Ar-r/7-constant-R,, where R, is the initial
radius of the fireball. We can now go back to equations
(4)-(6) and set O/Os- y/r. We then find that the terms we
neglected on the right-hand sides of these equations are
smaller than the terms on the left by a factor of - 1/y. The
conservation laws (7) and the scalings (8) are therefore valid
so long as the radiation-dominated fireball expands ultra-
relativistically with large 7. The only possible exception is in
the very outermost layers of the fireball, where the pressure
gradient may be extremely steep and _/_s may be >> y/r.
Ignoring this minor deviation, we interpret equation (7) and
the constancy of the radial width Ar in the observer's frame
to mean that the fireball behaves like a pulse of energy with a
frozen radial profile, accelerating outwards at almost the
speed of light.

In the alternate matter-dominated regime (e<<n), we
obtain from equation (7) the following different set of
scalings:

7 _ constant, nocr -z, eocr -_/3, T,,b_ocr -2/3. (9)

The modified scalings of n and e arise because the fireball
now moves with a constant radial width in the comoving
frame. (The steeper fall-off of e with r is a result of the work
done by the radiation through tangential expansion.) More-
over, since e << n, the radiation has no important dynamical
effect on the motion and produces no significant radial
acceleration. ), therefore remains constant on streamlines,
and the fluid coasts with a constant asymptotic radial
velocity. Of course, since each shell moves with a velocity
that is slightly less than c and that is different from one shell
to the next, the frozen-pulse approximation on which
equation (7) is based must ultimately break down at some
large radius. We consider this question below, but first
continue with our investigation of the approximate relations
in equation (7).

A scaling solution that is valid in both the radiation-

dominated and matter-dominated regimes, as well as in the
transition zone between, can be obtained by combining the
conserved quantities in equation (7) appropriately. Let to be
the time and r._be the radius at which a fluid shell in the fire-
ball first becomes ultrarelativistic, with y _ few. We label the
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various properties of the shell at this time with the subscript
0, e.g. Y0, no, e0, and define q = e/n, qo = co/no. Defining the
auxiliary quantity D, where

1 Yc_+ 3_0 3 (10)
D y 4q_), 4qij'

we find that

y_/2 D3/2 lltl el) _o

r = rl) I"I e

These are parametric relations which give the r, n, e and q of
each fluid shell at any time in terms of the ), of the shell at
that time. The relation for r in terms of ), is a cubic equation.
This can in principle be inverted to yield y(r), and thereby n
and e, and 77may also be expressed in terms of r.

The parametric solution (1 1) describes both the radiation-
dominated and matter-dominated phases of the fireball
within the frozen-pulse approximation. For _'<< q_70, the
first term in equation (10) dominates and we find D ocr, ), oc r,
recovering the radiation-dominated scalings of equation (8).
This regime extends out to a radius of r-qoro . At larger
radii, the first and last terms in (10) become comparable and
), tends to its asymptotic value of _,f= (4r/0/3 + 1)), 0. This is
the matter-dominated regime. (The transition occurs when
4e/3= n, which happens when )I= yf/2.) In this regime,
D oc r2/3, leading to the scalings in equation (9).

Ultimately, all the energy in the fireball is concentrated in
the kinetic energy of the matter, and this determines the
value of 7f. Interestingly, if we write 7f in terms of the initial
parameters of the fireball at time t = 0, we find yf= q, + 1,
whereas when we write it in terms of _/0, )'0 we have the
additional factor of 4/3 as written above. Both formulae
represent energy conservation, but the component T" of the
energy momentum tensor behaves differently in the two cases.
At time t = 0, the fluid is at rest and the radiation energy
density is merely e, whereas at t=t0 the fluid
is already moving highly relativistically and there is an addi-
tional contribution to the energy from the moving pressure,
T" = _02e+(1/3)uZe -(4/3) _02e.

Let us now return to a consideration of very late times in
the matter-dominated phase, at which the frozen-pulse
approximation begins to break down. We have already seen
that in this phase the radiation density e is much smaller than
the matter density n, and also that ), tends to a constant value
),f for each shell. We may therefore neglect the term
-(1/3)(Oe/Or) in equation (3) and treat _' and u in equations
(1)-(3) as constants. We then find that the flow moves strictly
along the characteristic, fltt- r= constant, so that each fluid
shell coasts at a constant radial speed, flf = ur/Tr. Let us label
the baryonic shells in the fireball by a Lagrangian coordinate
R, moving with a fixed Lorentz factor yf(R), and let t_ and r_
represent the time and radius at which the coasting phase
begins, which correspond essentially to the point at which the
fluid makes the transition from being radiation-dominated to
matter-dominated. We then find that

Jr,(R)- l
r(t, R)-r¢(R)- [t- I_(R)]

y,(R)

['1,= 1-2_,_(R } [t-t_(r)l. (12}
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The separation between two neighbouring shells separated

by a Lagrangian distance AR varies during the coasting

phase as

dt J AR= [y,(R)3 _J AR' (13)

Thus the width of the pulse at time t is

Ar(t) = Ar c + A _'r(t - to)IT _ = R i + (t - t c )ly{,

where Ar c -R i is the width of the fireball when it begins

coasting, pf is the mean ?'r in the pulse, and A},f-pf is the

spread of _'e across the pulse. From this result, we see that

there are two separate regimes in the fireball evolution even

within the matter-dominated coasting phase. As long as

t -to <_R_, we have a frozen-coasting phase in which Ar is

approximately constant and the frozen-pulse approximation

is valid. In this regime, the scalings in equation (9) are satis-

fied. However, when t- t c > _R,, the fireball switches to an

expanding-coasting phase, where Ar_:t-t_. and the pulse

width grows linearly with time. In this regime the scaling of n

reverts to n oc r 3, and, if the radiation is still coupled to the

matter, e ,x r- 4.

Independently of the above considerations, at some point

during the expansion the fireball will become optically thin

and the radiation will decouple. From this stage on, the radia-

tion and the baryons no longer move with the same velocity

and the radiation pressure vanishes, leading to a breakdown

of equations (2) and (3). The radiation will now coast with a

speed exactly equal to c and with a constant radial width.

The radiation energy density will clearly scale as e oc r- 2. The

baryon shells, on the other hand, will coast with their own

individual velocities. If the fireball is already in the matter-

dominated coasting phase, there will be no change in the

propagation of the baryons. If, however, the fireball is in the

radiation-dominated phase when it becomes optically thin,

then the baryons will continue to be dragged by the photons

until the mean path for Compton scattering of an electron by

the photons is larger than the size of the fireball. Since this

mean free path is smaller by a factor of (he/n×) _/3 than the

mean free path for the scattering of a photon by an electron,

an additional expansion by a factor of (ny/n_) _'_3is required

for the baryons to decouple from the radiation (Mds2aros,

Laguna & Rees 1993). Once this has happened the baryons

switch to a coasting phase.

The final outcome of the fireball depends on the stage at

which the fireball becomes optically thin. If this happens

during the radiation-dominated era, then most of the initial

energy will escape as photons, typically with the same

temperature as the initial temperature (Goodman 19861. If,

on the other hand, the fireball is in the matter-dominated era,

then most of the energy will have been converted into the

kinetic energy of the baryons and only a negligible fraction

will be carried by the photons. However, in this case it is still

possible to recover the energy in the form of radiation if the

escaping baryons interact with the surrounding matter

(Mds2aros & Rees 1992, 1993; Blandford & McKee 1977).

3 NUMERICAL RESULTS

We have developed a spherically symmetric relativistic code
that follows the evolution of a mass-loaded fireball from an

initial configuration at rest, via the acceleration phase, into

the asymptotic frozen-pulse regime (Shemi 1993; Shemi &

Piran, in preparation). The code is Eulerian and employs a

second-order conserved scheme (Bowers & Wilson 19911

which is modified to take into account the extreme relativis-

tic Lorentz factors encountered in this problem. Our scheme

is quite different from the one used by Vitello & Salvati

(19761, who studied a similar problem. The code has passed

several standard tests, including the Richardson test, i.e. the

results converge satisfactorily as the grid size is decreased.

The initial profiles for the cases that we present here are

e. n(r, O)= e( r, O), y(r, O)= 1,
e(r, t = O)= (R_ + rS> " rL

(14)

where we choose R_, the initial width of the fireball, to bc

unity. The initial radiation density e0 is in arbitrary units, and

we assume a constant ratio q, of energy to mass. The energy

density falls off sufficiently rapidly with radius in the initial

profile that the external density is negligible compared to the

interior density. We cannot, however, set the exterior density

exactly to zero, since this leads to numerical problems. We

have explored different initial conditions, and find different

pulse shapes, but the overall qualitative behaviour is

generally similar to the results described below.

Fig. 1(a) shows a sequence of profiles in the observer's frame

of the energy density, 7e, and the mass density, },n, for a simula-

tion with r/, = 50. Three phases of evolution arc apparent,

namely an initial acceleration/rearrangement phase, a short

radiation-dominated phase, and a final matter-dominated

phase. Conservation of energy requires that,asymptotically, the

average Lorentz factor of the expanding fluid should be

pf = rL = 1. Wc compute p at each stage by means of

I T"r'- dr

j 1"" r: dr

'/[I (T"+ T") r-' drl[j (r" - T")r: arl
(151

where the second expression is preferable for numerical

accuracy. The average Lorentz factor in this simulation does

approach the expected asymptotic value, but it does not

quite reach it because we did not let the computation

continue for a long enough time.

Early in the evolution, the pulse rearranges itself during a

brief acceleration phase. Although with our choice of initial

data the ratio between the energy and mass densities, r/,

initially has a constant value throughout the fireball (equation

14), it changes during this phase and no longer remains

constant within the pulse. Generally, r/ends up being smaller

in the inner parts of the fireball and larger on the outside.

This can be seen in Fig. 2, which shows n, e and _, at a fixed

moment in time alter the end of the early phase of rearrange-

ment. After this phase, the shape of the pulse is frozen and

the fireball evolves through a radiation-dominated phase to a
matter-dominated state. The transition from radiation-

dominated to matter-dominated can be clearly seen in Fig.

l(a), where the matter density is initially lower than the
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Figure 1. (a) The energy density e}, (solid lines) and the mass density n 7 (dotted lines) in the observer's frame for a numerical simulation in

which the initial energy-to-mass ratio qi= 50. (b) The Lorentz factor 7 (solid lines) and the observed temperature 7],b_ = 7 T= ye L'_ (dotted

lines). The temperature scale is arbitrary.
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Figure 2. Calculated (solid lines) and extrapolated (dotted lines) n, e and 7 profiles at t = 153.7 (the end of the computation). The extrapolation

is from t = 14 (shortly after the end of the rearrangement phase) using equations (10)-(11). The agreement is best in the trailing edge of the

pulse in the interior of the fireball, and is less satisfactory in the leading edge. This is a result of the combined effects of the steep pressure

gradient and the loss of numerical accuracy at lower densities.

energy density but becomes larger by the end of the compu-

tation.

The profile of the Lorentz factor 7 at various times in the

pulse is shown in Fig. l(b). We see that 7 varies significantly

across the pulse. Whereas the mean _f cannot exceed the

asymptotic value of rL+ 1, the maximum Lorentz factor

within the pulse is larger than this and in fact increases

throughout the evolution. This happens because the outer-

most layers of the fireball keep accelerating, as can be seen in

Fig. 2. The Lorentz factor therefore peaks ahead of the

energy density in a low-density region, and a small fraction of

the material is accelerated to these high-?, values. The peak
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in y leads to the highest observed temperature being
obtained from the front of the fireball and to lower tempera-
tures being obtained from the interior (Fig. lb).

In Fig. 2 we compare the calculated pulse at t= 153.7 to a
pulse extrapolated, using equations (10) and (11), from
t = 14. The agreement is very good considering that the
energy and matter densities have decreased by 4 and 3
orders of magnitude, respectively, while the maximal Lorentz
factor has increased by a factor of 6 between these two
moments. The agreement is excellent in the inner region of
the pulse, but is less satisfactory on the outside. This is partly
due to the continuing acceleration of the outer regions, in
which the pressure gradient is steepest, and partly because of
decreased numerical accuracy in the regions in which the
density is very low.

Fig. l(b) shows profiles of Tobs, the temperature that
would be observed at infinity if the radiation could escape.

At early times, there is a drop in T,,b., due to the broadening
of the pulse as a result of internal rearrangement. During the
subsequent radiation-dominated phase, Toc 7 - _ (equation 8),
and the observed temperature T,,b_ of each shell remains
constant. The overall spectrum of a fireball that becomes
optically thin during this phase is a blending of thermal
spectra with different temperatures and different blueshifts,
and will be slightly broader than a single-temperature
thermal spectrum (see Goodman 1986). The spectrum does
not change during the radiation-dominated phase, apart from
a minor effect due to the addition of a harder component
from the acceleration of the outermost layers of the fireball.

When a given shell enters the matter-dominated phase, T,,b_
begins to decrease, since T continues to decrease but there is
no longer a compensating increase in y (equation 9). The
result is a softer spectrum than that observed during the
radiation-dominated phase. The spectrum emitted depends
now on the moment at which each shell becomes optically
thin. Since different shells become optically thin at different
values of 7, we expect the spectrum to be broader than that
emitted during the radiation-dominated phase.

The evolution of the relativistic radiation fireball that we

have described here and in Section 2 is remarkably different
from that of a Newtonian fireball with r/_<< 1. Fig. 3 shows
the energy density and the mass density for a pulse with
_L=0.001. None of the features described earlier appear.
Relativistic velocities are never reached and the shape of the
pulse is not frozen. We observe instead an expanding, almost
homogeneous sphere, rather than an expanding shell of

matter and radiation, and the expansion velocity_ of most of
the fireball is roughly the Newtonian velocity 42 q, = 0.045. A
negligible fraction of the matter on the surface is accelerated
to higher speeds. Interestingly, the Newtonian fireball bears a
strong qualitative resemblance to the relativistic fireball in
the local frame. The differences between the two cases arise
mainly because of the transformation to the observer's
frame. In the Newtonian case, there is no difference between
the observer's frame and the matter local frame, but in the

relativistic case Lorentz contraction leads to a drastic change
in the appearance of the fireball. In the former case the fire-
ball therefore appears to fill the entire sphere of radius r,

whereas in the latter case the observer sees a narrow pulse
whose width remains of the same order as the original width,
leading to a time-scale of - R,/c.

4 CONCLUSIONS

We have shown in this paper that fireballs with large initial
ratios q, of radiation energy to rest mass energy show certain
common global features during their expansion and evolu-
tion. After a short initial acceleration phase, the fluid reaches
relativistic velocities, and the energy and mass become

concentrated in a radial pulse whose shape remains frozen in
the subsequent expansion. The motion is then described by
an asymptotic solution (equations 10 and 1 l; see Section 2),
which gives, for each individual shell, scaling laws similar to
those of a homogeneous sphere.

The expanding fireball has two basic phases: a radiation-
dominated phase and a matter-dominated phase. Initially,
during the radiation-dominated phase, the fluid accelerates
with yoc r for each Lagrangian shell. The fireball is roughly
homogeneous in its local rest frame but, due to the Lorentz
contraction, its width in the observer's frame is Ar= R,, the
initial size of the fireball. When the mean Lorentz factor of

the fireball becomes _= (qi + 1 )/2, a transition takes place to
the matter-dominated phase. Ultimately, all the energy
becomes concentrated in the kinetic energy of the matter,
and the matter coasts asymptotically with a final Lorentz
factor of _f _ (t/, + 1 ). The matter-dominated phase is itself
further divided into two subphases. At first, there is a frozen-
coasting phase, in which the fireball expands as a shell of
fixed radial width in its own local frame, with a width
--_fR_-q_R,. Because of Lorentz contraction, the pulse

E" -2
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-lO
o 5 lO 15 20
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Figure 3. The energy density e (solid lines) and the mass density n
(dotted lines) for a Newtonian or non-relativistic fireball with
_/,= 0.001. Note that. while the final time is the same as in Fig. I, the
pulse has propagated a much shorter distance. There is no hint of a
shell structure or a frozen-pulse shape here, in contrast to the relati-
vistic case shown in Fig. 1.



appears to an observer to have a width of Ar= R_. Eventu-

ally, the spread in _f as a function of radius within the fireball

results in a spreading of the pulse and the fireball enters the

coasting-expanding phase. In this final phase, Ark Rit/_,

and the observed pulse width increases linearly with time.

The fireball can become optically thin in any of the above

phases. Once this has happened the system ceases to behave

like a fluid, and the radiation moves as a pulse with a

constant width, while the baryons enter a coasting phase like

the one described above. If the fireball becomes optically

thin during the radiation-dominated phase, there will be a

short photon-dragging phase, in which the baryons will

continue to be accelerated by the radiation field until the

mean free path for an electron is larger than the size of the

fireball. The free-coasting phase for the baryons will begin

from this point onwards.

We have verified many of these theoretical results by

means of numerical simulations of spherically symmetric

relativistic fireballs (Section 3). In particular, we confirm that

the asymptotic solution with a frozen-pulse shape is repro-

'duced to a good approximation. This is a very useful result,

since it implies that in future it will not be necessary to carry

out numerical simulations to very late times. As soon as the

Lorentz factor of the expanding fluid reaches a moderately

large value, say _- 10, we can use the theoretical results to

extrapolate the pulse. This will provide a huge saving in

computation time, particularly in cases where q_ >> 1 and the

asymptotic _ is very large.

An important aspect of fireball evolution that can be

studied only by numerical simulations is the early stages of

rearrangement. During this phase, the fireball is still only

mildly relativistic, and it internally modifies the profiles of

the energy and matter densities. From a number of simula-

tions with different initial conditions, we find that the ratio of

energy density to matter density, q, usually ends up with a
lower value in the interior of the fireball than on the outside.

The Lorentz factor 7 also invariably increases from the

inside out. These modified profiles enter the frozen-pulse

phase and then do not change any further. Consequently, it

appears to be a generic feature that any radiation that

escapes from the fireball will be hot on the outside and

cooler on the inside. In other words, the observed radiation

pulse will tend always to have a spectral profile that shows a
characteristic hard-to-soft transition as a function of time.

This effect will be enhanced if the early radiation from the

outside is emitted in the radiation-dominated phase and the

later radiation from the interior is released from matter-

dominated layers. The hard-to-soft signature will be even

stronger in this case. Even if the radiation is not obtained
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directly from the fireball, but through shock reradiation as

the fireball interacts with external matter, this feature should

still be present.

The discussion in this paper has been restricted to general

issues related to the evolution of relativistic fireballs, and we

have focused on the phase in which the fireball expands

effectively into a vacuum. The most immediate application of

these results is to cosmological and Galactic halo models of

gamma-ray bursts. Although these models differ in their

explanations of the origin of the gamma-rays, all of them

involve a stage in which the initially injected energy goes

through a fireball phase. The scaling laws that we have

written down for the matter and energy densities, the

temperature and the Lorentz factor 7 will therefore be

relevant. Also, the hard-to-soft spectral evolution described

above should be observed in each sub-burst, and possibly

across the whole burst as well. In fact, this prediction is

probably valid regardless of the way in which the final

observed radiation is produced, whether it be through direct

emission from the fireball when it becomes optically thin

(Goodman 1986; Paczyfiski 1986; Shemi & Piran 1990) or

through shock re-emission (M6s2aros & Rees 1992, 1993).
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